Multi-ion distributions in the cytoplasmic domain of inward rectifier potassium channels.
نویسندگان
چکیده
Inward rectifier potassium (Kir) channels act as cellular diodes, allowing unrestricted flow of potassium (K(+)) into the cell while preventing currents of large magnitude in the outward direction. The rectification mechanism by which this occurs involves a coupling between K(+) and intracellular blockers-magnesium (Mg(2+)) or polyamines-that simultaneously occupy the permeation pathway. In addition to the transmembrane pore, Kirs possess a large cytoplasmic domain (CD) that provides a favorable electronegative environment for cations. Electrophysiological experiments have shown that the CD is a key regulator of both conductance and rectification. In this study, we calculate and compare averaged equilibrium probability densities of K(+) and Cl(-) in open-pore models of the CDs of a weak (Kir1.1-ROMK) and a strong (Kir2.1-IRK) rectifier through explicit-solvent molecular-dynamics simulations in ~1 M KCl. The CD of both channels concentrates K(+) ions greater than threefold inside the cytoplasmic pore while IRK shows an additional K(+) accumulation region near the cytoplasmic entrance. Simulations carried out with Mg(2+) or spermine (SPM(4+)) show that these ions interact with pore-lining residues, shielding the surface charge and reducing K(+) in both channels. The results also show that SPM(4+) behaves differently inside these two channels. Although SPM(4+) remains inside the CD of ROMK, it diffuses around the entire volume of the pore. In contrast, this polyatomic cation finds long-lived conformational states inside the IRK pore, interacting with residues E224, D259, and E299. The strong rectifier CD is also capable of sequestering an additional SPM(4+) at the cytoplasmic entrance near a cluster of negative residues D249, D274, E275, and D276. Although understanding the actual mechanism of rectification blockade will require high-resolution structural information of the blocked state, these simulations provide insight into how sequence variation in the CD can affect the multi-ion distributions that underlie the mechanisms of conduction, rectification affinity, and kinetics.
منابع مشابه
Activation of Inward Rectifier Potassium Channels in High Salt Impairment of Hydrogen Sulfide-Induced Aortic Relaxation in Rats
Introduction: Hydrogen sulfide (H2S) plays a key role in the regulation of vascular tone and protection of blood vessels against endothelial dysfunction. Since the mechanism of salt impairing H2S-induced vascular relaxation is not fully clear, therefore this study was designed to investigate the role of potassium (K+) channels in the vasodilatory effects of exogenous H2S in rat aortic rings.&nb...
متن کاملStructural Basis of Inward Rectification Cytoplasmic Pore of the G Protein-Gated Inward Rectifier GIRK1 at 1.8 Å Resolution
Inward rectifier K(+) channels govern the resting membrane voltage in many cells. Regulation of these ion channels via G protein-coupled receptor signaling underlies the control of heart rate and the actions of neurotransmitters in the central nervous system. We have determined the protein structure formed by the intracellular N- and C termini of the G protein-gated inward rectifier K(+) channe...
متن کاملThe 9 1 integrin enhances cell migration by polyamine-mediated modulation of an inward-rectifier potassium channel
The 9 1 integrin accelerates cell migration through binding of spermidine/spermine acetyltransferase (SSAT) to the 9 cytoplasmic domain. We now show that SSAT enhances 9-mediated migration specifically through catabolism of spermidine and/or spermine. Because spermine and spermidine are effective blockers of K ion efflux through inward-rectifier K (Kir) channels, we examined the involvement of ...
متن کاملControl of rectification and permeation by residues in two distinct domains in an inward rectifier K+ channel
Inwardly rectifying K+ channels conduct more inward than outward current as a result of voltage-dependent block of the channel pore by intracellular Mg2+ and polyamines. We investigated the molecular mechanism and structural determinants of inward rectification and ion permeation in a strongly rectifying channel, IRK1. Block by Mg2+ and polyamines is found not to conform to one-to-one binding, ...
متن کاملSurface expression of inward rectifier potassium channels is controlled by selective Golgi export.
Traffic of integral membrane proteins along the secretory pathway is not simply a default process but can be selective. Such selectivity is achieved by sequence information within the cargo protein that recruits coat protein complexes to drive the formation of transport vesicles. A number of sequence motifs have been identified in the cytoplasmic domains of ion channels that regulate early traf...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biophysical journal
دوره 103 3 شماره
صفحات -
تاریخ انتشار 2012